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1 Introduction

The problem has the classic setup with an oddly math-obsessed warden offering
their prisoners a chance at freedom behind a math puzzle. The aim is to come
up with a strategy for the two prisoners to win the game and escape. The setup
is as follows:

The warden has a standard 8x8 chessboard and places a coin on each square
of the board. Every square has 1 coin and they can be placed with either heads
or tails facing up. The warden then hides a key under one coin (we can assume
each square on the chessboard has a compartment that can discreetly hide a
key). The prisoners do not know beforehand which coins are heads and tails, or
where the key is located.
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As the game begins, prisoner 1 enters the room with the chessboard and is
allowed to look at the orientation of the board and coins. The warden shows
prisoner 1 where the key is located; Prisoner 1 must then flip exactly one coin
and leave the room. Now, prisoner 2 enters the room and examines the chess-
board position. Without altering the board’s position, prisoner 2 must guess
the location of the key to win.

The prisoners are allowed to discuss and come up with a strategy beforehand,
however the warden is aware of the prisoners’ strategy before setting up the coins
and key. The prisoners are not allowed to communicate once the game begins.
Is there a strategy the prisoners can use to win?

If you wish to try out the problem yourself, I would recommend pausing here
before reading any further! You have been warned!

While these notes will cover the solution and some nice ways of looking at this
problem, our main aim of will be to study a more generalised version of this
problem. Specifically, given the same rules but instead arbitrary d-sided dice
placed on a board with n-total squares (in the above case, d = 2 and n = 64),
we will look at 1) the solvability of the problem - i.e. if a winning strategy exists
(spoiler - it does not always exist) and 2) finding conditions on d, n to determine
when the game is solvable.

2 The Original Problem

The aim of the problem is to find a way of reading the board such that each
board state highlights a single square or ‘key position’ and the distance between
any two key positions is exactly one coin flip. There are a fair few different
models one might try in order to study the problem, and we will look at the
two most popular ones.

2.1 Model 1

We will first look at a model that uses graph theory.

2x1 Board

On a 2x1 board, there are four possible board states. Let us represent each
‘tails’ as 0 and each ‘heads’ as 1.

0 0 0 1 1 0 1 1
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With this in mind, we can map each board state to the vertices of a square.

Notice that any two vertices of a square connected by an edge are separated by
exactly one coin flip. Now, we know that there are two possible locations of the
key. So assign each key location a color. Here, there are two colors. Solving the
problem then becomes equivalent to coloring the square such that every vertex
is adjacent to at least one vertex of every color. i.e If player 1 starts with a
specific board state, or a specific vertex, they can reach either a vertex with one
color - board state that represents the key at the first position - or a vertex with
the other color - analogously, the second position. Player 2 need only note what
the color of the vertex is given their board state. For this case, the coloring is
simple:
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3x1 Board

This model allows us to prove that the game is impossible in the 3x1 case. Here,
there are 8 possible board states and hence we have the vertices of a cube.

0 0 0 0 0 1 0 1 0 0 1 1

1 0 0 1 0 1 1 1 0 1 1 1

Since there are 3 possible key positions, we must find a 3-coloring of the cube
so that every vertex is adjacent to each of the three colors. This turns out to
be impossible.

Showing some cases are impossible

We have a more general result.

Theorem 1. For n 6= 2m for some m, there is no n− coloring of a hypercube
with 2n vertices such that each vertex has one vertex of every color adjacent to
it.

Proof Sketch. Assume that such a coloring exists. Pick an arbitrary color, say
red. Then every vertex has exactly one red neighbor. So the number of red
neighbors is 2n. Now given that every vertex has n-neighbours, we get that
2n = n ∗ (the number of red vertices). This is not possible if n is not a power of
2.

We only provide a sketch here as we will prove stronger claims about this later.

2.2 Model 2 - The Solution

2x1 Board

Represent each tails as 0 and heads as 1. Let the board positions be indexed from
0. We say that the board sum s is the linear combination of board positioned
scaled by their respective coin value. So for the following board

1 1

s = 1(0) + 1(1) = 1. This board sum represents the square associated to this
board state, here it is the square at position 1 (which is the second square).
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1 1

Now if the key is at position 0, then player 1 must flip the coin at position 1. If
the key is at position 1, the coin at position 0 is flipped.

1 0

key
0 1

0 1

key
0 1

Player 2 can then calculate the board value and find where the key is.

Theorem 2. Let s be the board sum on the 2x1 board, k be the position of the
key. Then if Player 1 flips coin f = k − s mod 2, the new board sum s2 = k.

Proof. By flipping the coin at f , we are adding f to the sum s. And by definition
of f , f + s = k. Thus the resulting board sum is k. Note: even if the coin at
f is 1, flipping the coin to 0 is the same as adding f . s = x + f for some
x ∈ {0, 1} =⇒ s + f = x + 2f = x = s− f . �

Original Problem

One might be tempted to solve the original case as follows: Let s = c0(0) +
c1(1) + c2(2) + ... + c63(63) be the linear combination of the board positions
scaled by coin values ci. Let k be the position of the key. Then the coin to be
flipped is f = k − s mod 63. However, this fails. Consider the case:

0 1 0 ... 0 0

key
0 1 2 ... 62 63

Here s = 1, k = 2 so we need to add 1 to the board sum. However flipping the
coin at 1 subtracts 1 from the total sum s, leaving the board value at 0.

0 0 0 ... 0 0

key
0 1 2 ... 62 63
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In the 2x1 case, since we were working in addition modulo 2, subtracting 1 is
the same as adding 1, but here, adding a position number and subtracting it
are not equivalent. Adding 1 to s modulo 64 is equivalent to subtracting 63. If
the coin at position 63 were a 1, then we would flip this and subtract 63 from
the total. This is clearly impossible with the given case. Therefore this solution
will fail.

To fix this, we will label the positions on the board in binary as follows:

000000 000001 000010 ... 111110 111111

(0) (1) (2) ... (62) (63)

We will define addition to be digit-wise addition modulo 2 (This is equivalent
to an XOR operation). We then get the result we want.

Theorem 3. Let s = c0(b0)⊕c1(b1)...⊕c63(b63) be the binary board sum, where
ci is the coin value at position i, bi is the binary representation of i, and ⊕ is
bitwise addition modulo 2 or XOR. Let k be the position of the key in binary.
Then, under this definition of the board sum, flipping the coin at position f =
k ⊕ s will result in a board sum of k.

Proof. It is clear that f = bi for some i ∈ {0, 1, .., 63}. Now since x⊕ x = 0 for
any position x on the board, we have that flipping the coin at f from 0 to 1 or vice
versa is equivalent to adding f to the board sum. Then s2 = s⊕f = s⊕s⊕k = k.

�

Note: We assumed above that ⊕ is associative and commutative, which is al-
right as the set of board positions in binary along with ⊕ form an abelian group.
One can do the above steps without commutativity as well. It is simply more
convenient for explanation purposes.

As an example game, consider the coin arrangement on the board as follows.

0 0 ... 0 0 0 ... 0 1

(000000)

(0)
(000001)

(1)
... 101000

(40)
key 101010

(42)
... 11110

(62)
11111

(63)

s = 632 = 111111 and k = 412 = 101001. So we need to add f = 010110 = k⊕ s
to s. So player 1 flips the coin at 010110 = 222 to get a board:
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0 0 ... 1 ... 0 ... 0 1

(000000)

(0)
(000001)

(1)
... 010110

(22)
101001

(41)
key

... 11110

(62)
11111

(63)

Then, player 2 comes and finds that the board sum is now 412 = 101001.

3 The General Chess Board Problem

3.1 Restating the Problem

In the original problem, the board consisted of 64 squares and coins with 2 sides.
We will now look at the problem with the same rules, but a generalised setup.
More specifically, the problem is:

The warden has a board with n total squares (The board need not be a
square) and places a dice with d sides on each square of the board. Every
square has 1 dice and they can be placed with either heads or tails facing up.
The warden then hides a key under one coin (assume each square on the board
has a compartment that can discretely hide a key). The prisoners do not know
beforehand which coins are heads and tails, and where the key is located.

As the game begins, prisoner 1 enters the room with the board and is allowed
to look at the orientation of the board and coins. The warden then shows
prisoner 1 where the key is located. Prisoner 1 then flips exactly one dice to
any of the other sides, and leaves the room. Now, prisoner 2 enters the room
and examines the chessboard position. Without altering the boards position,
prisoner 2 must guess the location of the key to win.

The prisoners are allowed to discuss and come up with a strategy beforehand,
however the warden is aware of the prisoners’ strategy before setting up the coins
and key. The prisoners are not allowed to communicate once the game begins.

Questions:

1) Given some n, d, is the problem solvable?

2) Are there necessary and conditions on d and n that determine solvability?
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When we use the term solvable, we will refer to solvability by method 2 of the
original problem. Since this method also required a choice of labeling and op-
eration (binary, instead of integers mod 64), we will work with the following
definitions:

Notation 1. Let there be a board of size n and arrangement of d sided dice on
the board. Let there be a labeling L = {b0, b1, ..., bn} of the board positions with
an operation + on L. We denote di(bi) = bi + bi + ...bi di-times. where di is
the value of the dice on bi (di will always be some natural number).

Definition 1. Let the board, dice, and labeling be as above. We define the
board sum s = d0(b0) + ... + dn(bn) where di is the value of the dice on bi

Definition 2. Given n, d ∈ N, we say a game with a board with n squares and d-
sided dice is solvable iff there exists a labeling such that for any dice arrangement
and key position k as in the rules of the game, there exists at least one dice flip
such that the resulting board has sum k.

Therefore, our question is: For what values of n, d is the game solvable?

3.2 Property of the labeling

As noted before, the choice of labeling is a significant component of the problem.
We will require the following properties with our board-sum model:

1) The set of elements of board positions must have a closed operation +.

2) There must exist an identity element 0 under +. (This is because if the
board sum is equal to the key position, we must be able to add 0 to the total.

3) Every position x must have an inverse under +. (This is in case the key
is at 0 and the board sum is y 6= 0).

Thus we have our first fact.

Fact 1. The labeling of a board with n squares under the operation forms a
group.
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3.3 Properties of the Group

The criterion that the label is a group is not enough. As a quick example of
this, we can look at the following 3x1 case from before:

0 0 1

key
0 1 2

Here, n = 3, d = 2, k = 1. There is only one group of order 3, that is Z/3. Since
the board sum s = 2, f = k − s = 1 − 2 (mod 3) = 2. But we cannot add 2
or subtract 1 with the above board position. Flipping the coin at 2 subtracts 2
(or equivalently, adds 1) from the total, while flipping the coin at 1 adds 1 (or
equivalently, subtracts 2) to the total.

0 0 0

key
0 1 2

0 1 1

key
0 1 2

This brings us to our main result.

Theorem 4. Let n, d ∈ N be as before. The game is solvable if and only if ∃ a
group of size n where the order of every element is at most d.

Proof.

Forward Implication

Let the game be solvable. Therefore there exists a labeling G of size n of the
board with property as in definition 2. Since every labeling forms a group,
we will show that no element of G has order greater than d. We proceed by
contradiction.

Let x ∈ G be such that ord(x) = m ≥ d + 1. Recall that every element of G
denotes a board position. Consider the following board arrangement:

0 0 ... 0 d 0 ... 0 ... 0 ... 0

g0 g1 ... gi x gi+2 ... dx ... (d+ 1)x
key

... gn
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Here, s = dx 6= 0. Note that (d + 1)x 6= dx since x 6= 0. Now given that
the game is solvable, there exists y ∈ G and 0 ≤ dy ≤ d ∈ N such that
dx+dyy = k = (d+1)x and dyy 6= dx if x = y (Since player 1 must flip some dice
and cannot leave the board state unaltered). Thus dyy = x = −(m − 1)x 6= 0
(mod n). So we must either add x or subtract (m − 1)x. But neither of these
is possible. Since the dice at x is at d, we cannot add x to get (d + 1)x with
this dice as every dice only has d-sides (and (d + 1)x 6= 0. We cannot subtract
(m − 1)x because (m − 1)x 6= x and so has a dice with 0 value. So we cannot
subtract (m− 1)x by changing this dice value.

We then get that the game is not solvable, which is a contradiction. Therefore,
for any x ∈ G, the order of x is at most d.

Backward Implication

Let G be a group of order n, with every element of at most order d. Pick
any one-to-one mapping of the elements of G onto the squares of the board.
Consider an arbitrary board arrangement.

d0 d1 ... di dk di+2 ... dn

g0 g1 ... gi k
key

gi+2 ... gn

Now we have s =
∑n

i=0 digi ∈ G. Let f = s − k ∈ G. Clearly s + f = k. Now
consider the dice on f , df . Case 1: df < d. Then flipping the dice to (df + 1)
will make the board sum s + f = k. Case 2: if df = d. Since ord(f) ≤ d,
either ord(f) = d or ord(f) < d. In the first case, set df = 0 and in the latter
case, set df to d + 1−ord (f) (If f = 0, then just change the dice to any other
number). �

Examples

1) For the n = 3, d = 2 case from before, we see that the only group of order 3
is Z/3, in which every element has order 3 > d = 2.

2) For the n = 64, d = 2 case (the original problem), we see that Z/64 fails
as it has elements of order greater than 2, but our binary labeling, i.e. (Z/2)6

worked since every element has order at most 2.
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3) For d = 2, The only groups that will work are (Z/2)m. And so we see that
theorem 1 and the original problem are special cases of this.

3.4 Programmability and Relations between d and n

While the above result explains the structure of the underlying problem well, it
is not a good condition if one were to try to write a program to check whether
an arbitrary case, given n, d is solvable. Therefore, we will now try to classify
what cases are solvable by examining conditions on d, n and studying when such
groups exist.

Case 1: d ≥ n

This case is straightforward. For d ≥ n, consider the Group Z/n. The order of
every element is at most n and so the game is solvable. There is, in some sense,
more than enough information that each dice can provide.

Case 2: d < n

This case is the more interesting one. Clearly not every case here is solvable as
noted before. We have then the following results.

Theorem 5. Let the prime factorization of n be n =
∏m

i=0 p
ki
i . If d < pm, then

the game is unsolvable.

Proof. This follows from Cauchy’s theorem, that for any finite group G of order
n, there exists an element of order pi for every i ∈ {0, ...,m}. �

Theorem 6. Let the prime factorization of n be as in theorem 5. If n > d ≥∏m
i=0 pi, then the game is solvable.

Proof. Consider the group (Z/p0)k0 × (Z/p1)k1 × ...× (Z/pm)km . The order of
every element in this group is at most

∏m
i=0 pi �

Theorem 7. Let the prime factorization of n be as in theorem 4. If pm < d <∏m
i=0 pi, then there is no finite abelian group that satisfies theorem 4.

Proof. This follows from the classification of finite abelian groups, which states
that any finite abelian group is a product of cyclic groups of prime-power order.
Therefore in any finite abelian group of order n, there will exist at least one
element of order p0p1...pm. �
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Final Question

Given our results for case 2, it is only left to check for what values of d between
pm and

∏m
i=0 pi the game is solvable. There are examples of both solvable and

unsolvable game with these restrictions:

Solvable: Let n = 6, d = 5. Here the non-abelian group of permutations of three
elements, S3, works as a labeling and one can check that this is indeed a valid
labeling of the board.

Unsolvable: Let n = 28, d = 8. There is no group that satisfies theorem 4 and
therefore this case is unsolvable. In fact, for every d < 14 there are no solutions.

We can find that certain groups are helpful to look at. If we look at the dihedran
group, for example, we get the following result:

Fact 2. If n = 2p1...pm where pi 6= 2, then for any
∏m

i=0 pi ≤ d < n, the game
is solvable by taking the Dihedral group Dn/2

Similarly, looking at the permutation groups Sn we see:

Fact 3. If n = m! for some m ∈ N, then for n ≤ d the game is solvable by
taking the group Sn

Finding a general criterion with the remaining cases would then mean classifying
for arbitrary values of n the lowest possible maximal-element-order of every non-
abelian group of order n. What the criterion is is not clear yet.
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