Symbolic Regression and Polynomial
Optimization in Scientific Discovery




Aim
® To discover meaningful laws of nature from experimental data

i.e. Given some data {(x;,...,X,,Y);};eg We want to find a function f so that
y = f(x;,...,x,) for each data point.
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Pros: Good for discovering patterns in data Pros: Models are very interpretable
Drawback: Model itself is uninterpretable Drawback: Functional form is fixed
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Approach 1: Symbolic Regression

In particular, we will look at the
approach in this paper:

Al Feynman: a Physics-Inspired Method for Symbolic Regression

Silviu-Marian Udrescu, Max Tegmark*
Dept. of Physics & Center for Brains, Minds & Machines,
Massachusetts Institute of Technology, Cambridge, MA 02139; sudrescu@mit.edu and
Theiss Research, La Jolla, CA 92037, USA

(Dated: Published in Science Advances, 6:eaay2631, April 15, 2020)

A core challenge for both physics and artificial intelligence (AI) is symbolic regression: finding
a symbolic expression that matches data from an unknown function. Although this problem is
likely to be NP-hard in principle, functions of practical interest often exhibit symmetries, sepa-
rability, compositionality and other simplifying properties. In this spirit, we develop a recursive
multidimensional symbolic regression algorithm that combines neural network fitting with a suite of
physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics,
and it discovers all of them, while previous publicly available software cracks only 71; for a more
difficult physics-based test set, we improve the state of the art success rate from 15% to 90%.

I. INTRODUCTION

In 1601, Johannes Kepler got access to the world’s best
data tables on planetary orbits, and after 4 years and
about 40 failed attempts to fit the Mars data to various
ovoid shapes, he launched a scientific revolution by dis-
covering that Mars’ orbit was an ellipse [1|. This was
an example of symbolic regression: discovering a sym-
bolic expression that accurately matches a given data
set. More specifically, we are given a table of num-
bers, whose rows are of the form {zi,...,z,,y} where
y = f(z1,...,x,), and our task is to discover the correct
symbolic expression for the unknown mystery function f,
optionally including the complication of noise.

Growing data sets have motivated attempts to automate
such regression tasks, with significant success. For the

search space characterizes many famous classes of prob-
lems, from codebreaking and Rubik’s cube to the natu-
ral selection problem of finding those genetic codes that
produce the most evoutionarily fit organisms. This has
motivated genetic algorithms (2, 3| for targeted searches
in exponentially large spaces, which replace the above-
mentioned brute-force search by biology-inspired strate-
gies of mutation, selection, inheritance and recombina-
tion; crudely speaking, the role of genes is played by use-
ful symbol strings that may form part of the sought-after
formula or program. Such algorithms have been success-
fully applied to areas ranging from design of antennas
[4, 5] and vehicles [6] to wireless routing [7], vehicle rout-
ing (8], robot navigation [9], code breaking [10], discover-
ing partial differential equations [11], investment strategy
[12], marketing [13], classification [14], Rubik’s cube [15],
program synthesis [16] and metabolic networks [17].
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® Given some data {(x,...,X,,¥);};c5 We want to find a function f so that
y = f(xy,...,x,) for each data point when the functional form of fis unknown.
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® |n particular, given a set S of symbols (e.g. +, —, + ,\/:etc), find a function (string) f built

from these symbols so that y = f(x,, ..., x,) tits the data.
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Symbolic Regression

® |n particular, given a set S of symbols (e.g. +, —, + ,\/:etc), find a function (string) f built
from these symbols so that y = f(x,, ..., x,) tits the data.

For generic tfunctions f(x;,...,x,), this is NP hard i

® Search grows exponentially with the number of symbols.

® Brute force search becomes infeasible very quickly

2 1%

o~ l +—
f= ~ 30 years,

V27 \/1—"—2

~ 10° years, and so on.




Symbolic Regression

Feynman | Equation
eq.
1.6.20a |f=e"9/2/\/2r
02
1.6.20 f=e 202 /]\/27mo?
_ (6—01)%

[.6.20b |f=e 202 /2702
1.8.14 |d=+/(z2 — 371)(2; + (y2 — y1)?

_ mimo
1.9.18 b= (w2 —x1)2+(y2—y1)2+(22—21)?
1.10.7 m = ——4

2
1=z
[.11.19 A=1x1y1 + x2y2 + x3Y3
1121 |F = uN,
1.12.2 = 113,
I.12.4 Ef — 47:'1617"2
[.12.5 F = QQEf
1.12.11 |F = q(Ef + Bvsin#)
1.13.4 K = %m(v2 + u? + w?)
11312 |U=Gmima(L — 1)
1.14.3 U=mgz
2

1.14.4 = Sepring?
[.15.3x  |z1 L_u

BUT
SCIENCE IS
NOT
GENERIC




Symbolic Regression

In physics and in lots of science applications, functions we care about tend to be nice in the
following ways:

1. Units: f and its variables have to be dimensionally consistent
2. Low degree polynomials: Parts of f tend to have low degree polynomials

3. Compositionality: f'is a composition of elementary functions

4. Smoothness: fis continuous and often analytic on its domain

5. Symmetry: f comes with translational, rotational, and scaling symmetry with respect to
some variables

6. Separability: f can be written as the sum or product of two parts with no common
variables
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Symbolic Regression

In physics and in lots of science applications, functions we care about tend to be nice in the
following ways:

1. Units: Can use this to transtorm the problem to fewer independent variables
2. Low degree polynomials: Can use this to do polynomial fits for parts of f

3. Compositionality: Can use brute force for parts of the function

4. Smoothness: f can be learned by a NN

5. Symmetry: Can be tested by a neural network trained on the data

6. Separability: Can be tested by a neural network trained on the data



Symbolic Regression

The idea:
Input Current Data (Function)
Reduce variables by
dimensionality
It poly fit /
brute force Train a NN
fails

Query NN to reduce
variables

It poly fit /
brute force
succeeds

—

Poly fit / Brute torce
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Symbolic Regression - Example

(X —x1)*+ (O —y)? + (g — 71)?

.1431209959193709
.4680655653881054
. 7621479700455853
.9536888384746354
«1532278876457527
.9899434091665062
.2841783534277345
. 3550853261290494
. 7529820467784543
.2043936184306594
.3423962980280737
.4156715177406782
.0187117984150182
.5109587435415031
.5078719313855347
.4846972064278652
2.1398682204221178
1.7000728811732311
2.3516545980830331
2.6157973581192184

bt N et B bt e et NN et et B b RN e

2.7700644791483753
2.2073166947348444
1.4168131204210188
2.733626794584349
1.5016008010765851
1.42508958039594244
2.5038413591290976
2.2555822345853405
2.6405850369222492
1.4441117081403013
2.0552387587225684
1.8577553334831364
1.0672568295716016
2.5932595628763617
1.2771974670079432
2.7401242687834313
1.5018412666279194
1.5155671571998763
1.8329627134609363
2.0432144044920815

1.7508575540193472
1.77617@5838854234
1.5378176974809339
1.2592849110534683
1.4218686278023172
2.5409132056932424
1.2255232096430668
1.45254687086453792
1.6148891450043024
1.4546229392136278
2.8071816262301414
2.5122383795854709
1.4729243386484654
2.9492633493443927
2.7296063077362385
1.3356870260708698
2.0784556152016664
1.5295642030291683
2.4473327905843174
1.4576627239471807

SO Seeeee w

.23452895063856676
. 159194093345867914
.14429337334417677
.15360014539410058
.18514940761978987
.17131474581788358
.18928439532548785
« 15982929556091857
.13519598787103054
.33122650381723288
.25403615776576924
.16623813635214552
.19367199411465894
.256808582940703343
.12803644285479733
L17177799061908141
«17976791449866503
.23465391617605863
.14157574334122566
. 14873897153317067

Input Current Data (Function)




Symbolic Regression - Example

|dea: Because fis dimensionally consistent, we can factor it into a
component that encodes the dimension and a dimensionless term

Reduce variables by
dimensionality

Gm,m,
(X = x1)? + (p = y1)? + (2o — 29)?

T T

2
Gml ny

T (- D2+ (T =D+ (=)

X9

X1



Symbolic Regression - Example

|dea: Because fis dimensionally consistent, we can factor it into a
component that encodes the dimension and a dimensionless term

This reduces the number of variables to consider. Reduce variables by
dimensionality

Gm,m,
(X = x1)? + (p = y1)? + (2o — 29)?

T T

b—=1)2+(c—d)*+ (e —f)?

Gm;

2
A




Symbolic Regression - Example

|dea: Because fis dimensionally consistent, we can factor it into a
component that encodes the dimension and a dimensionless term

Represent each variable x; by a 5 integer vector u; corresponding to the Reduce variables by
fundamental units of the vector (being meter, second, kilogram, kelvin, dimensionality

volt). Let M be a matrix whose ith column is u;. Define b to be the

corresponding vector for y.
Let p be a solution to Mp = b and U be a basis for the null space of M

Then apply

n

XI—>H y|—>— wherey*—Hxl?’i

=1



Symbolic Regression - Example

Train a NN on the transformed columns. This is a black box oracle that
we can query.

A

(b—1>+(c—d)*+(e—f)

Architecture used:

Train a NN
Dimension of layers: (128,128,128,64,64,64) -

Epochs: 100
Learning rate: 0.005
Batch Size: 2048

Rms loss and Adam optimization
Weight decay: 1072




Symbolic Regression - Example

Test for symmetry, separability, and other properties and reduce
variables accordingly

d

(b—1>+(c—d)*+(e—f)*

| Translational Symmetry

da
(b—1)Y+g*+(e—f)

| Translational Symmetry
Query NN to reduce
d :
variables

(b—1)>"+g*+h?
/ Multiplicative Separability \ 1

(b—1)>+g>+ h?

A



Symbolic Regression - Example

Translational Symmetry

Let F(xy,...,x,) be the function learned by the neural network. Then

translational symmetry with respect to x; and x, corresponds to

Fx,+a,x+a,x,...x,) — F(x;,x,...,x,) =0

’T'n

It the difference is < egym, then apply x; = x, —x,

Query NN to reduce
variables



Symbolic Regression - Example

Multiplicative Separability

fis multiplicatively separable in x;, x, if f can be factored as

Jx1, %) = g(x)h(x,)

With no common variables.

To test this, pick constants ¢, ¢, and check if

X, C) - f(Cci, X
f(xl, xz) = A 1 2) A 1 2) Query NN to reduce
f(cy, ) variables

f so, then separate the problem of learning finto two

Up to €

sep*

subproblems of learning g and A



Symbolic Regression - Example

Translational Symmetry

Multiplicative Separability

Rotational Symmetry

Scaling Symmetry

Query NN to reduce
Additive Separability VEUEISIES




Symbolic Regression - Example

Test brute force / polynomial fit

S >

(b—1)>+g>+ h?

v 4 |

(b— 1)+ g>+h?

v

Poly fit / Brute force



Symbolic Regression - Example

Test brute force / polynomial fit Input Current Data (Function)

e >
a (b—1)>+g>+ h?
v

(b— 1)+ g>+h?

v

It this fails, then recursively take the smaller problems and rerun Poly fit / Brute force




Symbolic Regression - Example

This was tested on 100 equations from Feynman’s lecture notes and 20 harder equations

Feynman | Equation
eq.
1.6.20a |f=e0/2/\/2n
02
1.6.20 f=e 202 /2702
(9 91)2
[.6.20b |f=¢e /V2mo?
1.8.14 |d=+/(z2 — azl)é + (y2 — y1)?
_ mimo
1.9.18 F= (x2—21)2+(y2—y1)2+(22—21)?
1.10.7 m = ﬂ—2
1=z
[.11.19 |A =2z1y1 + Z2y2 + T3Y3
[.12.1 F = uN,
1.12.2 = 1z,
1124 Ef — 47:1611"2
[.12.5 F = q2FEy
[.12.11 = q(Ef + Bvsin6)
[.13.4 K = —m('u + u? —l—w )
[.L13.12 |U = Gmlmz(— — H
[.14.3 U =mgz
k oz
1.14.4 U= ==
r—ut
[.15.3x |xz1 = 1 u2/c
t— 'u,:c/c
[.15.3t t1 = Ji—u
mov
[.L15.10 |p= i f|’_2/°
. u—+v
[.16.6 U1 = Thuu/e2
1.18.4 |r = Maridmars
e mi+ma

Feynman | Equation

eq.

1.2.42 |P = =T2-T14

11.3.24 |Fp= ;I

I1.4.23 |V.= ;L

I1.6.11 |V, = ;= BaSps®

I1.6.15a |Ef = 4§€ iz /x? + 92

[1.6.15b |Ef = 47”2;% cos 6 sin 6

I1.8.7 |E= ?z?r?dz

1831 |Egen = 2

[L10.9 |Ej = Zden o

1113 |z = m(jf_fwz,)

L1117 |n=no(l+ P45L7>7)
2

I1.11.20 |P. = “grdzt

1.11.27 |P. = — m/3eEf

11.11.28 [#=1 + — (nam

[1.13.17 |B= ;1%

I1.13.23 |p. = 1"‘;02/62

11.13.34 |j = \/f_gm

[1.15.4 E = —puyBcosb

I1.15.5 |E = —pdEf cos 6

1.21.32 |Ve = frarizor

11.24.17 |k=1/% — %

[1.27.16 |Fg = ecEf

I1.27.18 |Egen = €E}

1.34.2a [I =1~

11342 KN = vr

[1.34.11 |w = &g

Source

Equation

Rutherford Scattering
Friedman Equation

Compton Scattering

Radiated gravitational wave power
Relativistic aberration

N-slit diffraction

Goldstein 3.16

Goldstein 3.55

Goldstein 3.64 (ellipse)
Goldstein 3.74 (Kepler)

Goldstein 3.99
Goldstein 8.56

Goldstein 12.80
Jackson 2.11

8t} k ¢ c?
H=\/"%"r= "z
f

— E
U 1+$(1—0059)

p— _32¢G? (mi1m2)?(mi+ma)
5

5 ¢

6, = arccos (

5

cos g9 — =

) v
C
1—X cos@ )
p= 2

. b 2
I=1Io [m(a/z) bm(Na/z)]

a/2 sin(48/2)
v=\2(E-U- 55
b — mLk2G (1+ \/1 + 2EL

_ d(1—a?)
r= 14+ cos(61—65)
. 2wd3/2
V/G(my+my)
_ 2¢2EL?
@= \/1 + m(Z1Z2q%)?

E = \/(p — qAyec)?c? +m2ct + qVe
E = 5;—[p* + m*w :c2(1+a“’)]

F_

[47reV d—

du3
(y2—d2)2

cos(91 —02))

|



Symbolic Regression - Example

This was tested on 100 equations from Feynman's lecture notes and 20 harder equations

The success rate was better than existing state of the art:

Equation Set Eurega (Benchmark) Al Feynman (with DA) Al Feynman (without DA)
100 Feynman Lecture Equations 68% 100% 93%
20 "Bonus" Equations 15% 90% ?




Symbolic Regression - Example

Couple of interesting notes:

1. Failure cases. For example, the Radiational Gravitational Waves equation:

32a*(1 + a)
5b3

32 G* 2(m, +
P (m;m,)-(m; + m,) — )=

5 ¢ rd

In reverse polish notation, this is the string

aaa > * *bbbbb * * * ¥/

Which would take too long to solve. This is separable, but the 5th power in the denominator cause
a wide dynamic range and so it was not detected



Symbolic Regression - Example

Couple of interesting notes:

2. Noise: Performance was consistent up to Gaussian noise levels of ¢ = 10™* but dropped by 50%

with noise around € = 1072,

The thresholds were not adjusted to each problem so the tolerance can probably be improved.



Symbolic Regression - Example

Couple of interesting notes:

3. Constants: Constants were treated as their own variables and symbols in the data. It's not clear

otherwise how we would discover relations such as G\/_ —  etc.

But how do we learn these specific relationships with real data?



Symbolic Regression

Problems:

1. Sensitivity to noise

2.Constant Relationships are di

ficult to detect

3.Require lots of data to train a neural network

Incorporate physics knowledge

into the search
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Approach 2: Symbolic Regression
with background knowledge

In particular, we will very briefly nature communications

look at the approach in this Paper. Combining data and theory for dériVable

scientific discovery with Al-Descartes

Received: 28 October 2021 Cristina Cornelio®'2 Sanjeeb Dash’', Vernon Austel’, Tyler R. Josephson ®34,
Joao Goncalves', Kenneth L. Clarkson', Nimrod Megiddo', Bachir El Khadir' &
Accepted: 8 March 2023 . 15
Lior Horesh®"
Published online: 12 April 2023
% Check for updates Scientists aim to discover meaningful formulae that accurately describe

experimental data. Mathematical models of natural phenomena can be
manually created from domain knowledge and fitted to data, or, in contrast,
created automatically from large datasets with machine-learning algorithms.
The problem of incorporating prior knowledge expressed as constraints on
the functional form of a learned model has been studied before, while finding
models that are consistent with prior knowledge expressed via general logical
axioms is an open problem. We develop a method to enable principled deri-
vations of models of natural phenomena from axiomatic knowledge and
experimental data by combining logical reasoning with symbolic regression.
We demonstrate these concepts for Kepler’s third law of planetary motion,
Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption.
We show we can discover governing laws from few data points when logical
reasoning is used to distinguish between candidate formulae having similar
error on the data.



Symbolic Regression with Background Knowledge

Key ldea:

, , Given some background theory
Use symbolic regression

B, use an Automated Theorem
methods to generate lots of

Prover (ATP) to rank and prove

candidates for the formula :
these candidates. Select the




Symbolic Regression with Background Knowledge

Main Contributions:

1. Incorporating a derivability module into the search.

Candidate Formula Derivability - Prove the Formula Existential Derivability
S = ! —_ B — £ — e ¢y St B — —
1.507X1 + 0302X2 , 1507X1 + 0302X2 b= , C1X1 + CrX»

Confirm Functional Eorm — Run your favorite method of

fitting parameters




Symbolic Regression with Background Knowledge

Main Contributions:

2. If not derivable, then have the theorem proved derive bounds on the error between
candidate function and functions derivable from the background theory

Point wise Generalized

reasoning error reasoning error




Symbolic Regression with Background Knowledge

Results: Ran this on more problems from the Feynman notes as well as supplementary problem:s.

Label Formula Al-Descartes Al Feynman PySR BMS
L1120  nyp2E;/(3k,T) V! X X /2
L1127  5oreEy V! X X X
L1128 1+ %7 v X X X
11.13.17 ‘#%2 - V! X v X
o 1
11.13.23 W v X X X
coV
11.13.34 T X X X X
02132 odsrs X X X X
11.24.17 oz X X X X
1.27.16  &cE? v X v v
[1.27.18  €E} v v v v
.34.2a qv/(27r) v v vl v
1.342  qvr/2 v v v v
.34.11  ggB/(2m) Vv v vl v
1.34.29a gh/(47m) v V! e v
11.34.29b  gupBJ,/h V2 X v v
3518 ——"0 X X X X
e kbxT e (kbXT)
13638  f=F + % X X X X
11.37.1 uy(1+x)B v X vl V2
1383  YAx/d v V2 v V2
38.14 5705 vl V2 X V2
Accuracy 86.67 % 80% 73.33% 80%



Symbolic Regression with Background Knowledge

Some Comments:

Failure Cases:

Most of the failure cases came from when the theorem prover could not prove derivability or
good bounds on the error.



Approach 3: Polynomial
Optimization



Approach 3: Polynomial

Optimization

In particular, we will look at the
approach in this paper:

nature communications

Article

https://doi.org/10.1038/s41467-024-50074-w

Evolving scientific discovery by unifying data
and background knowledge with Al Hilbert

Received: 23 September 2023

Accepted: 27 June 2024

Published online: 14 July 2024

% Check for updates

Ryan Cory-Wright®' |, Cristina Cornelio ®2, Sanjeeb Dash?, Bachir El Khadir® &
Lior Horesh®3

The discovery of scientific formulae that parsimoniously explain natural phe-
nomena and align with existing background theory is a key goal in science.
Historically, scientists have derived natural laws by manipulating equations
based on existing knowledge, forming new equations, and verifying them
experimentally. However, this does not include experimental data within the
discovery process, which may be inefficient. We propose a solution to this
problem when all axioms and scientific laws are expressible as polynomials and
argue our approach is widely applicable. We model notions of minimal com-
plexity using binary variables and logical constraints, solve polynomial opti-
mization problems via mixed-integer linear or semidefinite optimization, and
prove the validity of our scientific discoveries in a principled manner using
Positivstellensatz certificates. We demonstrate that some famous scientific
laws, including Kepler’'s Law of Planetary Motion and the Radiated Gravita-
tional Wave Power equation, can be derived in a principled manner from
axioms and experimental data.



Polynomial Optimization

Key Idea: There are a lot of laws in science that can be transformed to polynomial

expressions.

Examples:

4n°(d, + d,)’

Kepler's Third Law: p = \/

— p*G(m, + m,) — 4n°(d, + d,)*

G(ml + m2)

h
Compton Scattering Equation: 4, — 4, = (1 —cosl) —» (4, — /Il)hmec3(1 + cos 6)
C

Note: We will model things a
with diffegs and trig inequalit

m

ter polynomials and polynomial inequalities. We will not deal

ies directly, but we can get some mileage as we will see.



Polynomial Optimization

Key Idea: There are a lot of laws in science that can be transformed to polynomial
expressions.

Previous methods:

Search Search
Space Space

Formulae
that fit data

Formulae
that fit data

Derivable
Formulae

. Symbolic Regression

. Theorem Prover



Polynomial Optimization

Key Idea: There are a lot of laws in science that can be transformed to polynomial
expressions.

This work:

Search
Space

Derivable
Formulae

. Polynomial Optimization

. Algebraic Geometry Results



Polynomial Optimization

The idea is to solve the following optimization problem

min Z g(x;)| +A-d(¢q,GNH)

eRn.'
q 2d %.€D
8:t. E a, = 1,
uéﬂ:ul 21

a, =0 Vue: Z i 2> 1,

j=t+1



Polynomial Optimization

The idea is to solve the following optimization problem

min Y |g(&)| +A-d°(¢,GNH)

QERn 2d

% a, =1,

Fidelity to data pem >1

a, =0 Vue: Z i 2> 1,

j=t+1

This can be detined with [, or [__ loss



Polynomial Optimization

The idea is to solve the following optimization problem

min Y |g(&)| +A-d°(¢,GNH)

QERn 2d

Z;,€D \
S.T. Z

Qe = 1 | |
Qi >1 . | Distance between the discoverea
SASEL 20 B
g and the background theory

a, =0 ‘v’uEQ:ZpJ-ZL ENH
j=t+1



Polynomial Optimization

The idea is to solve the following optimization problem

min Y |g(&)| +A-d°(¢,GNH)

GRN.'Zd
. ;€D

S.t. Z a“ = 1’ \
pESk:py 21 Want a

G, =0 YpeQ: Z g > 1, polynomial in x,
j=t+1



Polynomial Optimization

The idea is to solve the following optimization problem

min ) |g(@:)| +A-d°(q,GNH)

€Rn.'
q 2d %. €D
8:t. E a, = 1,

a, =0 Vue: Z i 2> 1,

Bound on the
complexity of the expression



Polynomial Optimization - Distance to Background

Given some axioms h(X), ..., h(x) = 0, inequalities g;(x) > 0,....,g.(X) > 0, where
gi»h; € Rlxy,...,x,] and data &, define the sets

F={xeR"gx)=0}and Z = {x € R*| h(x) > 0}
We want to find a polynomial f such that

xesednNnH = f(x) >0

Theorem: Putinar’s Positive Stellensatz
It g., by, satisty the Archimedean property, i.e. there exists R and sum of squares polynomials &, . . ., a; such that

n k
R — le.z = q + Z a;g;, then for any degree d polynomial f, the implication above holds it and only it there exist sum of
squares polynomials a, . . ., o, and real polynomials f;, . . ., f; such that

k l
f=a0+zaigi+zlﬁjhj
i=1 =1



Polynomial Optimization - Distance to Background

Given some axioms h(X), ..., h(x) = 0, inequalities g;(x) > 0,....,g.(X) > 0, where
gi»h; € Rlx,,...,x,] and data &, define the sets

F={xeR"gx)=0}and Z = {x € R*| h(x) > 0}
We want to find a polynomial f such that
xesednNnH = f(x) >0

Case 1: Incomplete background knowledge

dlg, & NH) = min | Coeft (g — ay — Z A8 — Zﬁjhj)Hz

GEZ, i PER, .



Polynomial Optimization - Distance to Background

Given some axioms h(X), ..., h(x) = 0, inequalities g;(x) > 0,....,g.(X) > 0, where
gi»h; € Rlx,,...,x,] and data &, define the sets

F={xeR"gx)=0}and Z = {x € R*| h(x) > 0}
We want to find a polynomial f such that
xesednNnH = f(x) >0

Case 2: Inconsistent background knowledge

dlg, & NH) = min | Coeft (g — ay — Z A8 — Zﬁjhj)Hz

GEZ, i PER, .

st.a=0itz;=0, z € {0,1}
p;=0ity =0,y € {0,1}

ZZ +ny



Polynomial Optimization - Example
Let's say we want to discover Kepler's third law

! +d,)’
F= G(ml + n’lz)

We have data {(d,, d,, m;, m,,p);} as well as some knowledge ot physics

d1m1 — d2m2 = O,
(dy 4+ d2)*F, — Gmimao = 0,
F,. — m2d2w2 = 0,
Fo.—F, =0,
wp = 1,
Then running solving the optimization problem on a solver gives

mimaGp* — midids — madida — 2modids = 0

Which is the correct expression post-factoring



Polynomial Optimization - Example
Then running solving the optimization problem on a solver gives

mimaoGp* — midids — madids — 2modids = 0

Which is the correct expression post-factoring. What's more is that we also get the
corresponding a::

2 .2 2
_d2pw7

_p27
dip® + 2d,dop® + d3p°,
dip® + 2d,dop® + d3p°,

mldldgpw + defdzpw + 2m2d1d§pw + mldld% + mzd%dg + 2m2d1d§,



Polynomial Optimization - Example
Then running solving the optimization problem on a solver gives

mimaoGp* — midids — madids — 2modids = 0

Which is the correct expression post-factoring. What's more is that we also get the
corresponding a::

2 .2 2
_d2pw7

_p27
dip® + 2d,dop® + d3p°,
dip® + 2d,dop® + d3p°,

mldldgpw + defdzpw + 2m2d1d§pw + mldld% + mzd%dg + 2m2d1d§,



Polynomial Optimization - Example
Some other examples that were tested:

32G*

Radiational Gravitational Wave Power: P = - 55 (mimg)?(mq + my) with background

w?r3 — G(my +mg) = 0.

Hagen-Poiseulle Equation: u(r) = (r* — R%)

4L u

U = cg + cgrz,

0, 6 0 dp
ForTor™) T da
Co + 02}22 . 0,

dp
= _A
Ld.fL' p7

=0,



Polynomial Optimization - Results

Data Al-Hilbert  Al-Descartes [13] Al-Feynman [42] PySR [15] BMS [24]

X

Hagen Poiseuille

Gravitational Wave Power
Relat. Time Dilat.

Kepler’s 3 Law
Bell inequalities®

xR N XXX

3.1] 1.15.10 FSRD
3.1] 1.27.6 FSRD
3.1] 1.34.8 FSRD
3.1] 1.43.16 FSRD
3.1] 11.10.9 FSRD
3.1] I1.34.2 FSRD

3.2| Inelastic Relativ. Collision
3.3] Decay of Pion®

3.4] Radiation Damping

3.5] Escape Velocity

3.6] Hall Effect

3.7] Compton Scattering

Qﬁ <\_‘ < -g «_‘ % | B M M M X
SERNENENENE R
NN N S X X | X X X XX

¢ < < N < <

< < x

<

<

SN N N NN N N N NN N NN NN

A A X A<
D% ) X % %
S S S W %

<

Notation used in table:

v denotes the successful recovery of a scientific law.

X denotes the failure to recover a scientific law.

v/ denotes recovery up to constants, but not exact recovery.

/" denotes successful recovery when some variables that are potentially not observable are still
declared to be observable.



Polynomial Optimization

Some thoughts:

1. Solving the LP can be slow. In the worst case (for gravitational waves)



Ongoing work



o o o o
Projecting varieties
Aim: Discover Kepler’s Third Law using just background theory

d1m1 — d2m2 — 0,
(d1 -+ dz)ng — Gmimg =0,

A2 (dy + ds)3
F, — madow? =0, —> Pz\/W(l 2)

G )
F.—F, =0, (m1 +ms)
wp = 1,
Algebraically: Eliminating Variables
g V(flaf29f39f;laf5) C RS v C RS Encode axioms as anideal: I = (fi,...,fs) C R[m,d;,m,,d,, F,, Fg, w, p]

Compute the intersection [ N [R[ml, dl, n,, dz,p]

Encode axioms as an ideal: G = <g1, Cees gk> =1

This can be done using Groebner bases:
Compute the intersection G N R[mlv dl, n,, dz,p]



Abductive inference

We know we can recover a formula from a complete axiom system

Discovery

(dl -+ d2)2Fg — Gmimg =0,

2 __
Fe —madaw® =0, b \/47r2(d1 + dy)3

F.—F, =0,
wp = 1,

G’(m1 -+ mz) ’




Abductive inference

In practice, axiom systems can be incomplete. Can we rediscover a missing
axiom in the discovery process?

Abductive inference

Discovery

(d1 -+ dz)ng — Gmimg =0,

2 _
Fe —madyw®™ =0, . \/47r2(d1 + dy)?

F,—F, =0,
“oe—1

G’(m1 -+ mz) ’




Abductive inference

Key idea: Using data and variable elimination, we can still discover tormulae
with Al Hilbert

Assumption: The discovered formula g can be proven if we had an additional axiom.

l.e. q = Otlfl + azfé + a3fé+a4F4
100 , Where a,F, is unknown.

Then (fi.. /0. 5. @) = {1: for s AuFy).

7.5 F

50l Take the new “discovered” surface and break it into its
irreducible components

25 F

Coefficient distance to ground truth

V(fi for S @) = [ V)

0.0 [ 1 1 1 1
0 25 50 75 100
Number of data points

Where each V(p,) is irreducible. This is known as “primary
Rediscover Kepler with 70 data points if we omit wp — 1 decomposition” in commutative algebra.

47T2(d1 + d2)3
P = 9
G(m1 -+ m2)




Abductive inference

For Kepler's third law with wp — 1 missing, we get the following primary
decomposition:

(my, F,, F,y N (dy,m, F, F.) N {d; + dy,m|, F, — Fo,w”myd, — F,) N

iofofo@) = (Fo= Fetop— 1.mp? - didy = 2, = d3. Fifdy + ds)? = mymy womady — Fyp) 0

N(F,—F.(wp+1),mp* —did, — 2d\d; — d;, F (d; + dy)* — mymy, wmyd, + F,p)

i (d1 + d2)*F, — Gmimy = 0,
f‘2 Fc - m2d2w2 —_— O,
i F.—F, =0,
q

p mymy — didym, — 2d,dymy — d;m,



Abductive inference results

Problem & Axiom #

Axiom

Recovered*

Kepler 1

Kepler 2

Kepler 3

Kepler 4
Compton 1
Compton 2
Compton 3
Compton 4
Compton 5
Compton 6
Compton 7
Compton 8
Compton 9
Compton 10
Einstein 1
Einstein 2
Einstein 3
Einstein 4
Einstein 5
Escape Velocity 1
Escape Velocity 2
Escape Velocity 3
Escape Velocity 4
Escape Velocity 5

(dl + dg)ng — mi1mso
FC — m2d2w2

F.—F,

wp — 1

El + Eel — EQ — E62
E, —hf

Eo — hfs

pic— hfi

p2c — hfo

A f1—c

Ao fo —c

Eel — m?

Ee2? — c?pe2? — me?c?
pe2? — p22 — pl1? + 2plp2cos
cdto — 2 x d

42 — 4d? — v2dt?
Jodtg — 1

fdt — 1

cxdt — 2L

Ki — %mvg

Ky=0

Uf,;’l’ + GMm
U =0

K, +U; — (Kf-l-Uf)

R R O R R N R N N A A O N N G N N N SR SR R R

Light Damping 1
Light Damping 2
Light Damping 3
Light Damping 4
Light Damping 5
Hagen Poiseuille 1
Hagen Poiseuille 2
Hagen Poiseuille 3
Hagen Poiseuille 4
Neutrino Decay 1
Neutrino Decay 2
Neutrino Decay 3
Neutrino Decay 4
Neutrino Decay 5
Hall Effect 1

Hall Effect 2

Hall Effect 3

Hall Effect 4

Hall Effect 5

Hall Effect 6

Hall Effect 7

Hall Effect 8

Hall Effect 9

Sr? — qfaf, sin 62
dA — 27r? sin 0df
P — f(;" SdA

é - ™. 3
|- b
Cl,p = Ew Ip
u—~Ccy— Cg’l“2

- - d
u%(r%u) ~ 7'35

Co + 62R2

e e U OO OO0 eeCes




Other goings on

Dataset and
Benchmarking

Aim: Creating a
synthetic dataset of
polynomial axioms,
data, and discovered
formulae for
benchmarking progress
In the field

New Discoveries

Aim: Apply the tools
developed to research
problems in physics to
discover new scientific
facts. Current work
ongoing in cosmology.

Non-polynomial
Systems

Aim: Extending the
current framework to
systems involving
differential equations,
black box axioms, and
trig functions
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