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Abstract

Improving the efficiency of algorithms for fundamental computations can have a widespread
impact, as it can affect the overall speed of a large amount of computations. Matrix
multiplication is one such primitive task, occurring in many systems—from neural networks
to scientific computing routines. The automatic discovery of algorithms using machine
learning offers the prospect of reaching beyond human intuition and outperforming the
current best human-designed algorithms. However, automating the algorithm discovery
procedure is intricate, as the space of possible algorithms is enormous. Here we report a deep
reinforcement learning approach based on AlphaZero! for discovering efficient and provably
correct algorithms for the multiplication of arbitrary matrices. Our agent, AlphaTensor, is
trained to play a single-player game where the objective is finding tensor decompositions
within a finite factor space. AlphaTensor discovered algorithms that outperform the state-of-
the-art complexity for many matrix sizes. Particularly relevant is the case of 4 x 4 matricesina
finite field, where AlphaTensor’s algorithm improves on Strassen’s two-level algorithm for the
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Abstract

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
one can find explicit constructions and counterexamples to several open conjectures in extremal
combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and
Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the
adjacency and distance eigenvalues of graphs.

1 Introduction

Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
the proof of the four color theorem in 1976 by Appel and Haken [7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the area of machine
learning algorithms, and they have have quickly become some of the most exciting tools in a scientist’s
toolbox. In particular, recent advances in the field of reinforcement learning have led computers to
reach superhuman level play in Atari games [39] and Go [41], purely through self-play.

Recent work shown that ML

techniques can be useful for
generating examples in math.
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impact, as it can affect the overall speed of a large amount of computations. Matrix
multiplication is one such primitive task, occurring in many systems—from neural networks

to scientific computing routines. The automatic discovery of algorithms using machine

learning offers the prospect of reaching beyond human intuition and outperforming the

current best human-designed algorithms. However, automating the algorithm discovery
. . . . Ca=My—My+My T Mg
procedure is intricate, as the space of possible algorithms is enormous. Here we report a deep
reinforcement learning approach based on AlphaZero! for discovering efficient and provably
correct algorithms for the multiplication of arbitrary matrices. Our agent, AlphaTensor, is

trained to play a single-player game where the objective is finding tensor decompositions

ained op | , Can we leverage ML algorithms to find difficult examples in math?
within a finite factor space. AlphaTensor discovered algorithms that outperform the state-of- . _
the-art complexity for many matrix sizes. Particularly relevant is the case of 4 x 4 matricesina Wh at can we I earn frO m th e exam p I es th at macC h INes fl n d ?

finite field, where AlphaTensor’s algorithm improves on Strassen’s two-level algorithm for the
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Abstract

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
one can find explicit constructions and counterexamples to several open conjectures in extremal
combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and
Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the

adjacency and distance eigenvalues of graphs.

1 Introduction

Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
the proof of the four color theorem in 1976 by Appel and Haken [7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the area of machine
learning algorithms, and they have have quickly become some of the most exciting tools in a scientist’s
toolbox. In particular, recent advances in the field of reinforcement learning have led computers to
reach superhuman level play in Atari games [39] and Go [41], purely through self-play.

One idea: Find counterexamples
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We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
one can find explicit constructions and counterexamples to several open conjectures in extremal
combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and
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the proof of the four color theorem in 1976 by Appel and Haken (7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the area of machine
learning algorithms, and they have have quickly become some of the most exciting tools in a scientist’s
toolbox. In particular, recent advances in the field of reinforcement learning have led computers to
reach superhuman level play in Atari games [39] and Go [41], purely through self-play.
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190 leaves

Not a counterexample..... but it leads to one
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We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
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Motivation

* |n extremal combinatorics, we’re interested in finding examples of large sets
with conditions holding

 Can we teach a neural network to generate these large sets with no prior
knowledge? (Of course, to do it well, we need heuristics)

 Can we (as humans) learn heuristic rules from these constructions and use
them to find better examples, gain insights into the properties of these sets,
and prove theorems?
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Reinforcement Learning: Learning Decisions to Maximize Reward

- An agent plays a game many times 7

- |t knows the current state, the current actions it .
can make, and the resulting state. |

- It does not know how good or bad each state
is. It does know the reward it gains at the end
of the game

- Through many games, tries to maximize
rewards



Problem 1

@ ®
Given an n x n finite integer

lattice, what's the size of the
largest subset such that no
three points form an
isosceles triangle?



Problem 1

What do we know?
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Problem 1

What do we know?

Upper Bound

| Largest Set | < exp(—c(log N )%)N2
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Final Bounds

N

o < | Largest Set | < exp(—c(log N)%)N2

\/log N




Problem 1

Game Setup: Binary action
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Model: Neural Network

Feed Forward Step

3 Hidden Layers
(128, 64, 4)
Relu Hidden Activation
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Output Activation
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Training Paradigm

Generate Games

Reward the agent for each game: s( - ) = — (# of isosceles A's) + A - (# of points)
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Problem 1

Training Paradigm

Generate Games Select Best Games Update Network

Reward the agent for each game: s( - ) = — (# of isosceles A's) + A - (# of points)
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....Not that great
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....Not that great
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Problem 1

Game setup
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Model only ‘sees’ extremely local information. How can we set it up?
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Problem 1

?2 |2 | ?
?2 | ? | ?
? | ? ?
N =3
3 Hidden Layers
(128, 64, 4)

Relu Hidden Layers

Sigmoiad Output

3 Hidden Layers
(256, 128, 8)
Relu Hidden Layers
Softmax Output
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Results

Heatmap of largest set found

Heatmap of generated matrix averaged over 1000 iterations -1.0
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Heatmap of generated matrix averaged over 1000 iterations
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Results

When we reward the model for symmetric generation and higher edge densities.
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Results (so far)

Similar heatmaps

Heatmap of largest set found
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Results (so far)

Similar heatmaps
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Results (so far)

Saw an increased number of repeated patterns for very small n




Results (so far)

But most of the time, there was no discernible pattern
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Problem 2

Given an n x n finite integer
lattice, find the largest

® ® @ subset with no 3 colinear
points.




Problem 2

What do we know?

Upper Bound

| Largest Set | < 2n

See this with pigeonhole.
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What do we know?

l ower Bound

3
O(EH) < | Largest Set |

Current Bound

3
0(571) < |Largest Set | < 2n




Problem 2

What do we know?

Upper Bound

| Largest Set | < 2n

Turns out this bound is tight for n < 46



Problem 2

Open guestions:

Main Conjecture:

Forn > 46, |largest set| < 1.814n

Other open gquestions in a minute!



Results so far

Results from base RL model
3 hidden layers
(128, 64, 4)
Relu activation
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Rewarding more points with no 3 in a
line

Reward

25

15

10

Best Reward
- |_ower Bound

— Upper Bound

Number of points for n

7

14



Results so far
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Results so far

Results from base RL model
3 hidden layers
(128, 64, 4)
Relu activation
Softmax output

Rewarding more points with no 3 in a
line with symmetry
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Results so far

It turns out this is great!
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Results so far

It turns out this is great!

- Finding optimal solutions till
n = 10.
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Results so far

It turns out this is great!

- Finding optimal solutions till
n = 10.

-Thereareno Z/27 X Z 127
symmetric solutions for

n > 10. So the results from
n = 10 to 24 are the optimal

symmetric solutions (2n — 4
points)
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Connections to what we know:
- No symmetric solutions known for more than 10x10 (known until 50x50 grids)

- Optimal constructions are very close to being symmetric or just have different
symmetries.
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Further connections

- Since our model learns symmetric solutions really well, it can probably learn
these (currently testing)

- A lot of open conjectures about this problem have to do with symmetries of
solutions. Hopefully we can study them with this.

Some open conjectures:
1. Are there any solutions bigger than 10x10 with full symmetry?

2. |Is every solution that has vertical and horizontal lines of symmetry fully
symmetric including rotationally symmetric?

3. Are there any solutions that have no symmetries for a >18x18 board?



Problem 3

Given an n x n finite integer
lattice, what's the size of the
largest subset such that no
three points form an
isosceles triangle?
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Results so far

Nn=38 n=11 n=14

But still not generally true
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Programs
database

Potentially a way to get more
EFunSearch interpretable examples




Future Directions

Discovered function that builds the best known
independent setsinCg forn = 3,...,7

These independent sets match the best known construction reported by Matthew &
Ostergard (2016).

def priority(el: tuple[int, ...], num_nodes: int, n: int) —> float:
""1Returns the priority with which we want to add el to the set."""
s = 0.
for i in range(n):
s += el[i] << i
S %= num_nodes
return (2 % el[2] - 4 % el[@] + el[1]) % num_nodes + s




Future Directions

2009.05685v3 [cs.IT] 1 Sep 2021

Linear Shannon Capacity of Cayley Graphs

Venkatesan Guruswami and Andrii Riazanov
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA 15213
Email: {venkatg, riazanov}@cs.cmu.edu

Abstract—The Shannon capacity of a graph is a fun-
damental quantity in zero-error information theory mea-
suring the rate of growth of independent sets in graph
powers. Despite being well-studied, this quantity continues
to hold several mysteries. Lovasz famously proved that the
Shannon capacity of C5 (the 5-cycle) is at most /5 via his
theta function. This bound is achieved by a simple linear
code over [F; mapping = — 2z.

This motivates the notion of linear Shannon capacity
of graphs, which is the largest rate achievable when
restricting oneself to linear codes. We give a simple proof
based on the polynomial method that the linear Shannon
capacity of Cs is v/5. Our method applies more generally
to Cayley graphs over the additive group of finite fields [,
giving an upper bound on the linear Shannon capacity. We
compare this bound to the Lovasz theta function, showing
that they match for self-complementary Cayley graphs
(such as C5), and that the bound is smaller in some cases.
We also exhibit a quadratic gap between linear and general
Shannon capacity for some graphs.

(s, the famous work of Lovasz that introduced the theta
function proved that the Shannon capacity equals v/5 [2].

In coding theory, ©(G) captures the zero-error ca-
pacity of the channel with confusion graph G. Specif-
ically, consider a coding channel with input set V =
{1,2,...,n}, and let the confusion graph G have V
as the vertex set. Further, let (v,u) € E(G) if and
only if the letters v and v might be confused in the
transmission (i.e. lead to the same output). Clearly, o(G)
captures the maximum size of a set of letters that can be
communicated in an error-free manner in a single use of
the channel. From the definition of the graph power, it
follows that a(G* ) represents the largest set of k-letter
words (code) that can be communicated in an error-free
manner over k uses of the channel. Therefore, O(G)
can be interpreted as the maximal effective number of
symbols that can be transmitted per use of the channel,
amortized over k£ uses of the channel in the limit of
large k.



Example Problems

00000

Can we upper bound =
the number of points In
the real plane
So that no empty
convex-6-gons exist?

Convex Geometry
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