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Problem Statement

Given an N x N finite integer
lattice, what's the size of the
largest subset such that no

three points form an
isosceles triangle?
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how we can gain insights.

Size of largest isosceles-free subset vs lower bound
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Motivation

Psychology - How closely are the representations of concepts in our mind related?
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Motivation

Psychology - How closely are the representations of concepts in our mind related?

Sketches Human Similarity Judgements
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Motivation

 Framework: Asking questions of the form “is concept A closer to concept B
or concept C?”
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Motivation

 Framework: Asking questions of the form “is concept A closer to concept B
or concept C?”
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Math setting: Ordinal Embeddings

Problem of non-metric multidimensional scaling:

Given an integer n, a metric space (M, d), and a set X of ordered tuples (i, j, k, ) € [1..n]*, find an
embedding

[I.n]l = (&x,....x)EM

such that for each (x;, x;, x;, x) € 2,

d(x;, x;) < d(x, x7)




Math setting: Ordinal Embeddings

Problem of non-metric multidimensional scaling:
Given an integer n, a metric space (M, d), and a set X of ordered tuples (i, j, k, ) € [1..n]*, find an

embedding

[I.n]l = (&x,....x)EM

such that for each (x;, x;, x;, x) € 2,
d(x;, x;) < d(x, x7)

We will restrict ourselves to the case where every tuple in X is of the form (i, j, i, k). We call constraints of this form

Iriplet Comparisons
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- Have the pairwise distances between the points

Know: The location of the points up to
distance preserving affine linear transtormation
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Classical MDS Non-Metric MDS
ﬁ\ .. / »
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distance preserving affine linear transtormation



Math setting: non-metric vs classical MDS

Consider M = R4

Classical MDS Non-Metric MDS
ﬁ\ ;. / Y

° 3 d(x,y) > d(x,7)? /'
d(x, 7) . ¢ ¢

- Have the pairwise distances between the points - Have all possible triplet comparisons

Know: The location of the points up to It (xq,...,x,) satisties all constraints in 2, so does
distance preserving affine linear transtormation some perturbation of (x,...,x,)



Math setting: Ordinal Embeddings

Question

It all the triplet comparisons are known, then within what error can we determine (x,...,x,)?




Math setting: Ordinal Embeddings

Question

It all the triplet comparisons are known, then within what error can we determine (x,...,x,)?

Need: A way to compare to points satisfying the same triplet comparisons and establish a metric.
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Math setting: Definitions - Isotonic functions

A function on metric spaces f: M — N is weakly isotonic if for every m, m’,m"” € M, we have

dy(m,m’) < dy(m,m") i and only if dy(f(m), f(m") < dy(f(m), f(m"))




Math setting: Definitions - Isotonic functions

A function on metric spaces f: M — N is weakly isotonic if for every m, m’,m"” € M, we have

dy(m,m’) < dy(m,m") i and only if dy(f(m), f(m") < dy(f(m), f(m"))

We say that two n-tuples x = (x,...,x,) and y = (y;,...,Y,) in an ambient metric space M are weakly isotonic if the
induced map on the metric spaces

{'xl’ s e "xn} — {ylv s .. 7yn}
is weakly isotonic.
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For n-tuples x,y € M", we denote d_(x,y) := max d,(x; y;) overi € [1,....n]
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Math setting: Definitions - Distance metrics

For n-tuples x,y € M", we denote d_(x, y) := max dy,(x;,y;) overi € [1,...,n]

5 5 5

A similarity of a metric space M is a homeomorphism A : M — M which multiplies all distances by a scalar.

Note: if there is a similarity that maps x to y, then x and y are weakly isometric.

Final Distance Metric: mind_ (x, Ay)
A



Math setting: First proposition

Given a tuple x and a Manifold M, we define the Hausdorff distance é,(x, M) between the two as the smallest a such

that given any point m € M, there is some i such that

dy(x;,m) < «a
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Math setting: First proposition

Given a tuple x and a Manifold M, we define the Hausdorff distance é,(x, M) between the two as the smallest a such

that given any point m € M, there is some i such that

dy(x;,m) < «a

For the following results, we take M = [0,1]

Proposition [J. Ellenberg, L. Jain, 2019]

For tuples x = (x(,...,x,),y = (y{,-..,¥,) C [0,1], if we have that:

® 0,(x,[0,1]) L

® x and y are weakly isotonic

Then there exists a similarity A such that d_ (x, Ay) = 0€(a1_€)
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For tuples x = (x(,...,x,),y = (y{,...,¥,) C [0,1], if we have that:

® 0,(x, [0,1]) £«

® x and y are weakly isotonic

Then there exists a similarity A such that d_(x, Ay) = 06(051_6)

The Hausdorff Condition: There are no large gaps
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Proposition [J. Ellenberg, L. Jain, 2019]

For tuples x = (x(,...,x,),y = (y{,...,¥,) C [0,1], if we have that:

® 0,(x, [0,1]) £«

® x and y are weakly isotonic

Then there exists a similarity A such that d_(x, Ay) = Oe(al_e)
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Math setting: First proposition

Proposition [J. Ellenberg, L. Jain, 2019]

For tuples x = (x(,...,x,),y = (y{,...,¥,) C [0,1], if we have that:

® 0,(x, [0,1]) £«

® x and y are weakly isotonic

Then there exists a similarity A such that d_(x, Ay) = Oe(al_e)

The Hausdorff Condition: There are no large gaps

a=0.7 a=§
[ [r——
—000———————1| —0—0—0—
0 0.3 |
X X

Question: How optimal is O (a!7€)? Turns out, almost optimal!




Math setting: Proposition 2

Proposition 2 [J. Ellenber

For sufficiently small a, there exist tuples x = (x;,...,x,),y = (y,...,y,) C [0,1] such that

® 0,(x, [0,1]) £

® x and y are weakly isotonic

With d_(x, Ay) = Qe(aHe) for every similarity A.




Math setting: Proof of Proposition 2

Theorem [Graham, Ron 2006]

For every positive integer k, there exists a subset S of Z such that

o S C[1,M]with M > k¢'°¢% for some absolute constant ¢

® § has no 3 terms in arithmetic progression

® S has no gaps between successive terms of size greater than k
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Math setting: Proof of Proposition 2

Theorem [Graham, Ron 2006]

For every positive integer k, there exists a subset S of Z such that

o S C[1,M]with M > k¢'°¢% for some absolute constant ¢

® § has no 3 terms in arithmetic progression

® S has no gaps between successive terms of size greater than k

Take x = (xy,...,x5) be the set of points {s/M : s € §} C [0,1]. With a = k/2M, we have that
5H(x9 [091]) S 4

Given § has no 3-term arithmetic progression, for each triplet x;, x;, x; we have
2%, —x;—x; F 0
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Given § has no 3-term arithmetic progression, for each triplet x;, x;, x; we have

Since x C (1/M)Z, we get
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Math setting: Proof of Proposition 2

Given § has no 3-term arithmetic progression, for each triplet x;, x;, x; we have

Since x C (1/M)Z, we get
1
| 20, — x; — x;| 2 7
Therefore, it y = (yy,...,ys) satisties
1
=X < —
yi— x| <=

for each i, then y is weakly isotonic to x.



Math setting: Proof of Proposition 2

Given § has no 3-term arithmetic progression, for each triplet x;, x;, x; we have

Since x C (1/M)Z, we get
1
| 20, — x; — x;| 2 7
Therefore, it y = (yy,...,ys) satisties
1
=X < —

yi— x| <=

for each i, then y is weakly isotonic to x. Note that
0 = L k _kl—clogk

M = 2kelogk — 2

. 1 —clogk ; 1+
which means that 7 < k7% is Q(a ™).
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Math setting: Proof of Proposition 2

Need to construct y such that d_ (x, Ay) = Q(a'*€) for any similarity A.

Pick x;, x,_ | such that |x; —x,, ;| are of order a. Then take y, = x; — f,y,.1 = x;

order a!*¢.

This gives us that d_(x,y) > p.

f tor some f on the

Pick x;, x;| such that |x; — x;,,| are of order a. Then take y, =x; — f,y;,| = x| + [

Yi Yi+1 )

Yj+1

F——10000—90—0—00-9¢ —o—
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Math setting: Proof of Proposition 2

Need to construct y such that d_ (x, Ay) = Q(a'*€) for any similarity A.

Pick x;, x,. | such that |x; — x,, || are of order a. Then take y, = x; — f,y,.; = x;,; + f for some [ on the

order a!*¢.

This gives us that d_(x,y) > p.

Pick x;, x;| such that |x; —x;,,| are of order a. Then take y; = x; — f,y;,| = x;;| + [. For every other

k;éz,],l+1,]+1welltakeyk=xk.

Yi Yi+1 ) Yi+1
—_—— T

() 1



Math setting: Proof of Proposition 2

Need to construct y such that d_ (x, Ay) = Q(a'*€) for any similarity A.

Given a similarity A of R, if we have that d_(x,Ay) < f, then we would need Ay; > y,;and Ay, | < y;. ;.
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Need to construct y such that d_ (x, Ay) = Q(a'*€) for any similarity A.

Given a similarity A of R, if we have that d_(x,Ay) < f, then we would need Ay; > y,;and Ay, | < y;. ;.
So A has a fixed point between x; and x;_ ;.
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Math setting: Proof of Proposition 2

Need to construct y such that d_ (x, Ay) = Q(a'*€) for any similarity A.

Given a similarity A of R, if we have that d_(x,Ay) < f, then we would need Ay; > y,;and Ay, | < y;. ;.
So A has a fixed point between x; and x;, ;. But the same is true for y; and y, ;.

Yi Yi+1 ) Yi+1

0 -



Math setting: Proof of Proposition 2

Need to construct y such that d_ (x, Ay) = Q(a'*€) for any similarity A.

Given a similarity A of R, if we have that d_(x,Ay) < f, then we would need Ay; > y,;and Ay, | < y;. ;.

So A has a fixed point between x; and x;, ;. But the same is true for y; and y, ;.

By contradiction, we have that d__(x, Ay) > f = Q(a'*°)

Yi Yi+1 ) Yi+1
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Theorem [Arias-Castro 2015

Let U be a bounded, connected, open domain in RY xis a tuple such that 6,(x, U) < a, and y is weakly isotonic to x,
then for some similarity A of R¢, we have

d_(x,Ay) = O(a?)




Math setting: What do we know about higher dimensions?

Theorem [Arias-Castro 2015]

Let U be a bounded, connected, open domain in RY xis a tuple such that 6,(x, U) < a, and y is weakly isotonic to x,
then for some similarity A of R¢, we have

d.(x, Ay) = O(a?)

Theorem [J. Ellenberg, L. Jain 2019]

Let x = (x{,...,x,) C[0,1]% Fory = (y,,...,y,) be a subset of R? where the y; are chosen uniformly at random from
the Euclidean ball of size # > n~! around x.. Then the probability that y is isotonic to x is bounded above by exp(—cn)
for some constant ¢ > 0.




Math setting: What do we know about higher dimensions?

But what do we need to extend proposition 2 to higher dimensions?
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Theorem [Graham, Ron 2006]

For every positive integer k, there exists a subset S of Z such that
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Math setting: Insights from the proof

® S has no 3 terms in arithmetic progression

Take x = (xy, ... ’xlSI) be the set of points {s/M : s € §} C [0,1]. With a = k/2M, we have that
5H(x9 [091]) S 4

Given § has no 3-term arithmetic progression, for each triplet x;, x;, x; we have
2%, —x;—x; F 0
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Needed large set with no 3 term arithmetic progression



Math setting: Insights from the proof

Case: M = [0,1] Case: M = [0,1]¢

Needed large set with no 3 term arithmetic progression Needed large set with no 3 points forming an isosceles triangle

Question: What's the size of the largest subset § of an Nx integer lattice?
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Current known bounds: Lower Bound

Theorem [A. Wagner 2023]

Let S be the largest subset of an Nx/V lattice that contains no isosceles triangles, then we have that

N
| S = € )
\/log N




Current known bounds: Lower Bound

Proof:
Let v € NxN grid and d,(v) is the set of points at a distance k from v.
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vertex v and integer &,
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Current known bounds: Lower Bound

Proof:

Let v € NxN grid and d,(v) is the set of points at a distance k from v.

Let A be a random subset of Nx/N grid with each point picked with probability p. Then, for a fixed
vertex v and integer &,

PAN M) = 2) < (‘dk("”

, )pz < |d)|* p?

Sampling 2

points from
&y (v) \<‘7\

with ¢ ¢
repetition



Current known bounds: Lower Bound

P(JANnd,(v)| >22) < (‘dk;/)‘ )Pz < |d( | p°
O O @ O
O O O O
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Current known bounds: Lower Bound

‘d";})‘ >p2 < |d)|* p?

Fact: |d(v)|is bounded above by r,(k), the sum of squares function. So we get that for fixed v, «:

P(|ANd(v)| 22) < (

P(|ANd(v)| 2 2) < ry(k)°p*
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‘d";})‘ )pz < |d)|* p?

Fact: |d(v)|is bounded above by r,(k), the sum of squares function. So we get that for fixed v, «:

P(|ANd(v)| 22) < (

P(|ANdy(v)| > 2) < ry(k)°p*
Now we just fix v. Then,

2N?
P(3k: |AndW)]>2) < ) P(ANdW)| > 2)
k=1
O .
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Current known bounds: Lower Bound

‘d";})‘ )pz < |d)|* p?

Fact: |d(v)|is bounded above by r,(k), the sum of squares function. So we get that for fixed v, «:

P(|ANd(v)| 22) < (

P(|ANdy(v)| > 2) < ry(k)°p*
Now we just fix v. Then,

2N? 2N?
P(3k:1ANd )| 22) < Y PIANGM) | 22) < p* Y k)
k=1 k=1
® ¢
® @ ® ®
® @



Current known bounds: Lower Bound

2N?
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Current known bounds: Lower Bound
2N?
P(3k: |[ANdW)| 22) <p* ) k)

k=1
Fact: Z ry (k)™ < C N(log N)2"" =1 for a constant C,

k<N



Current known bounds: Lower Bound

ON?
P(3k: |[ANdW)| 22) <p* ) k)

k=1
Fact: Z ry (k)™ < C N(log N)2"" =1 for a constant C,

k<N

So we get for fixed v,
P(3k:|And(v)| 22) < Cp’N?log N
For a constant C.



Current known bounds: Lower Bound

Call a vertex v bad it it is in A and there are two points in A at the same distance from v.

O O » O
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Current known bounds: Lower Bound

Call a vertex v bad if it is in A and there are two points in A at the same distance from v. Then, we have

P(visbad) =p-P(3k: |ANnd(v)| = 2)

v
o bad

v
o bad
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Call a vertex v bad if it is in A and there are two points in A at the same distance from v. Then, we have
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v
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Current known bounds: Lower Bound

Call a vertex v bad if it is in A and there are two points in A at the same distance from v. Then, we have
P(visbad) =p-P(3k: |And(v)| 22) < Cp>’N?log N

Let B be the set of bad vertices. Then,

“(|Bl)= ), P(visbad) < Cp°N*logN
vegl"id




Current known bounds: Lower Bound

Call a vertex v bad if it is in A and there are two points in A at the same distance from v. Then, we have
P(visbad) =p-P(3k: |And(v)| 22) < Cp>’N?log N

Let B be the set of bad vertices. Then,

“(|Bl)= ), P(visbad) < Cp°N*logN
vegl"id

Then, E(|A — B|) = E(|A|) — E(|B|) > N°p — Cp°N*log N




Current known bounds: Lower Bound

Call a vertex v bad if it is in A and there are two points in A at the same distance from v. Then, we have
P(visbad) =p-P(3k: |And(v)| 22) < Cp>’N?log N

Let B be the set of bad vertices. Then,

“(|B|) = 2 P(v is bad) < Cp3N*log N
vegl"id

Then, E(|A — B|) = E(JA|) — E(| B|) > N% — Cp>N*log N

€
Taking p = where € is a small enough constant only depending on C, we get

Ny/log N

=(|A=BJ) 2 t (€ —Ce’) 2 ¢

for an absolute constant €’.




Current known bounds: Upper Bound

Roth's Theorem [Roth, 1953
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Current known bounds: Upper Bound

Roth's Theorem [Roth, 1953]
Let 7([V]) be the size of the largest subset of [1,...,N] that contain no 3-term arithmetic progressions. Then,

(IN)) = O(———)
: - loglog N

N
Given a subset S of the Nx/N grid of density greater than O(( )%)

loglog N
N
Then, for some j, we have that the jth row of S has density greater than O(1 1 N). By Roth’s Theorem, §;
0g 108
contains a 3-term arithmetic progression, i.e. an isosceles triangle.
O o o o . ? ? ' ‘ . ’ .




Current known bounds: Upper Bound

Theorem [Kelley, Meka, 2023]

Let 7([/V]) be the size of the largest subset of [1,...,N] that contain no 3-term arithmetic progressions. Then,

r([N]) < 2~0WogN))-N

Theorem [Bloom, Sisask, 2023]

Let r([N]) be the size of the largest subset of [1,...,N] that contain no 3-term arithmetic progressions. Then,

r([N]) < exp(—c(log N)")N




Current known bounds: Upper Bound

Theorem [Kelley, Meka, 2023]
Let r([N]) be the size of the largest subset of [1,...,/N] that contain no 3-term arithmetic progressions. Then,

r([N]) < 27 OogN))-N

Theorem [Bloom, Sisask, 2023]
Let r([N]) be the size of the largest subset of [1,...,N] that contain no 3-term arithmetic progressions. Then,

r([N]) < exp(—c(log N)")N

Final Bounds

< S L exp(—c(log N )%)N2

€/
\/log N
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 Computationally generate large isosceles free subsets of the integer lattice
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/

— ~
:Xé T

\




Some Vocabulary

Reinforcement Learning: Learning Decisions to Maximize Reward



Some Vocabulary

Reinforcement Learning: Learning Decisions to Maximize Reward

- An agent plays a game many times



Some Vocabulary

Reinforcement Learning: Learning Decisions to Maximize Reward

- An agent plays a game many times
- It knows the rules of the game but nothing else



Some Vocabulary

Reinforcement Learning: Learning Decisions to Maximize Reward

- An agent plays a game many times
- It knows the rules of the game but nothing else
- Takes actions without knowing best move



Some Vocabulary

Reinforcement Learning: Learning Decisions to Maximize Reward

- An agent plays a game many times

- It knows the rules of the game but nothing else
- Takes actions without knowing best move

- Rewarded at the end of each game



Some Vocabulary

Reinforcement Learning: Learning Decisions to Maximize Reward

- An agent plays a game many times

- It knows the rules of the game but nothing else

- Takes actions without knowing best move

- Rewarded at the end of each game

- Through many games, tries to maximize
rewards



Some Vocabulary

Reinforcement Learning: Learning Decisions to Maximize Reward

- An agent plays a game many times

- It knows the rules of the game but nothing else

- Takes actions without knowing best move

- Rewarded at the end of each game

- Through many games, tries to maximize
rewards




Previous works in machine learning applied to math

nature

Explore content v  About the journal v  Publish with us v

nature

Explore content v  About the journal v  Publish withus v

nature > articles > article

Article | Open Access | Published: 01 December 2021

Advancing mathematics by guiding human intuition
with Al

Alex Davies &, Petar Veli¢kovié, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Toma3ev, Richard

Tanburn, Peter Battaglia, Charles Blundell, Andras Juhész, Marc Lackenby, Geordie Williamson, Demis

Hassabis & Pushmeet Kohli

Nature 600, 70-74 (2021) | Cite this article

247k Accesses ‘ 92 Citations | 1609 Altmetric | Metrics

Abstract

The practice of mathematics involves discovering patterns and using these to formulate and
prove conjectures, resulting in theorems. Since the 1960s, mathematicians have used
computers to assist in the discovery of patterns and formulation of conjectures!, most
famously in the Birch and Swinnerton-Dyer conjecture?, a Millennium Prize Problem?. Here
we provide examples of new fundamental results in pure mathematics that have been
discovered with the assistance of machine learning—demonstrating a method by which
machine learning can aid mathematicians in discovering new conjectures and theorems. We
propose a process of using machine learning to discover potential patterns and relations
between mathematical objects, understanding them with attribution techniques and using

these observations to guide intuition and propose conjectures. We outline this machine-
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Improving the efficiency of algorithms for fundamental computations can have a widespread
impact, as it can affect the overall speed of a large amount of computations. Matrix
multiplication is one such primitive task, occurring in many systems—from neural networks
to scientific computing routines. The automatic discovery of algorithms using machine
learning offers the prospect of reaching beyond human intuition and outperforming the
current best human-designed algorithms. However, automating the algorithm discovery
procedure is intricate, as the space of possible algorithms is enormous. Here we report a deep
reinforcement learning approach based on AlphaZero! for discovering efficient and provably
correct algorithms for the multiplication of arbitrary matrices. Our agent, AlphaTensor, is
trained to play a single-player game where the objective is finding tensor decompositions
within a finite factor space. AlphaTensor discovered algorithms that outperform the state-of-
the-art complexity for many matrix sizes. Particularly relevant is the case of 4 x 4 matricesin a
finite field, where AlphaTensor’s algorithm improves on Strassen’s two-level algorithm for the
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Abstract

Large language models (LLMs) have demonstrated tremendous capabilities in solving
complex tasks, from quantitative reasoning to understanding natural language. However,
LLMs sometimes suffer from confabulations (or hallucinations), which can result in them
making plausible but incorrect statements’2. This hinders the use of current large models in
scientific discovery. Here we introduce FunSearch (short for searching in the function space),
an evolutionary procedure based on pairing a pretrained LLM with a systematic evaluator. We
demonstrate the effectiveness of this approach to surpass the best-known results in
important problems, pushing the boundary of existing LLM-based approaches2. Applying
FunSearch to a central problem in extremal combinatorics—the cap set problem—we discover

new constructions of large cap sets going beyond the best-known ones, both in finite
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Moral: Machine learning can be good at coming up with good examples
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RL Background

Environment

What do we need?

1. How do we gamify the problem?

2. What kind of model to use?

3. What is the reward function?

We start with no heuristic information



Algorithm Overview - Game setup




Algorithm Overview - Game setup

:» g




Algorithm Overview - Game setup

:» g




Algorithm Overview - Game setup

? g




Algorithm Overview - Generation

o 9 /‘\ / .
AR M |
Input Feed Forward Step Output |
State: 9 x 1 Vector 3 Hidden Layers Probabiﬁt bistribution
Position: 9 x 1 Vector (128, 64, 4) (Bir?/omial)

Relu Hidden Activation
Sigmoid Output Activation

Note: NO TRAINING (yet)
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Generate lots of games (~2000)

N .
0

Score = -0.5 Score = -3.5 Score = -2

I—

- of Isosceles A's) + 1 - (# of points)

s(+) =

- |



Algorithm Overview - Select Best

N .
0

Score = -0.5 Score = -3.5 Score = -2

Best Games: Top k percent (Usually ~200 games, i.e. k = 10)




Algorithm Overview - Training Network

Best Games

/

Cross Entropy Loss

N
/

%

\

Adam Optimizer



Algorithm Overview - Back to Generation
/

Cross Entropy Loss
Adam Optimizer

N
/

o

(=]
o~
0 1 2
o
o~
0 1 2




Algorithm Overview - Summary

Generate Games Select Best Games Train Network
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Adapted from [Wagner, 2021]:

Constructions in combinatorics via neural networks

Adam Zsolt Wagner*

Abstract

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
one can find explicit constructions and counterexamples to several open conjectures in extremal
combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and
Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the
adjacency and distance eigenvalues of graphs.

1 Introduction

Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
the proof of the four color theorem in 1976 by Appel and Haken (7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the area of machine
learning algorithms, and they have have quickly become some of the most exciting tools in a scientist’s
toolbox. In particular, recent advances in the field of reinforcement learning have led computers to
reach superhuman level play in Atari games [39] and Go [41], purely through self-play.

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics
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Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
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1 Introduction

Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
the proof of the four color theorem in 1976 by Appel and Haken [7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the area of machine
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Aim: Use this algorithm to generate
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Not a counterexample..... but it leads to one
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Things we've thought about along the way

Does the order of how you input the points matter?

- Turns out no.

What would happen it we used difterent model architectures?
- Does change performance, we will see an example later
What kind of heuristic information can we add?

- Best boards include patterns like symmetries, fewer dominos (adjacent points),
and more points closer to the edge



Image and Generation by Adam Z. Wagner
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Found largest

For large boards
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With no heuristics:

Results
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What makes this difficult?

Credit Assignment Problem: Which decision made the most difference?

Sparse rewards: We reward the agent at the end of the game

Reward function design.
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Overview

Mathematical Motivation and Background

® Motivation: Non Metric Multidimensional Scaling
® Key definitions and propositions
® Known bounds for the problem

How Reinforcement Learning can help

® Reinforcement learning background and main algorithm
® Current results and observations

® Next Steps



Next Steps

1. Activation Thresholding

Generate ~2000 games




Next Steps

1. Activation Thresholding

Generate games until you get enough above an activation threshold (o)

Score > o Score > o Score > o



Next Steps

2. Set up the game difterently:
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Next Steps

3. Inductive Thinking - Transfer Learning
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Next Steps

4. Experimenting more extensively with other architectures
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Different Architectures for NNs Transformers



Improvements

With Heuristics:

For large boards
(e.g. 64 x 64)

Found largest
known generations

64 x 64: 108 oints
110 Points

Image and Generation by Adam Z. Wagner



Next Steps

4. Experimenting more extensively with other architectures

FunSearch

Evaluation

Pretrained LLM

Specification

----------

____________________________

Programs
database

FunSearch

Uses a large language model
instead of a classical neural
network

Searches space of generating
programs instead of examples

Potentially a way to get more
interpretable examples



Currently Ongoing Progress

1. Set Up Game Ditterently - Learn entire board at once
2. Activation Thresholding
3. Inductive Thinking - Transfer Learning

4. Experiment with different architectures - Other NNs or Transformers
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